

LA-UR-21-28078

Approved for public release; distribution is unlimited.

Title: Neural Density Estimation and Uncertainty Quantification for ChemCam

Spectra

Author(s): Kontolati, Katiana

Panda, Nishant

Klein, Natalie Elizabeth Moore, Juston Shane Oyen, Diane Adele

Intended for: Report

Issued: 2021-08-12

Neural Density Estimation and Uncertainty Quantification for ChemCam Spectra

AML Fellow: Katiana Kontolati Ph.D. student, Johns Hopkins University

Mentors: Nishant Panda, Natalie Klein, Juston Moore, Diane Oyen

- Background: ChemCam data and literature review
- Motivation: Uncertainty quantification for ChemCam
- Methods: Generative modeling via normalizing flows
- Proposed approach and Results
- Discussion and Conclusions

Background: ChemCam

Illustration: ChemCam firing laser

- The ChemCam instrument of Curiosity uses laser-induced breakdown spectroscopy (LIBS)
- Fires a laser at target, vaporizes rock surfaces, creating a plasma
- Three spectrographs divide the plasma light into wavelengths for chemical analysis
- The three wavelength ranges: Ultraviolet, Violet, Visible Near-Infrared

Background

- Regression methods (SVR, PCR, CNN) have been employed for calibration (prediction of the elemental composition of samples)
- However, labeled ChemCam samples are limited

Motivation

- Focus on unsupervised learning and employ generative models from ChemCam analysis
- Use labels (supervised) in combination to the generative model to compute uncertainties related to predictions

Comparison of 10 regression models Boucher, T. F., et al., (2015). Spectr. Acta Part B: Atomic Spectroscopy

Learning the chemical content of samples (regression results)
Castorena, J. et al., (2021). Spectr. Acta Part B: Atomic Spectroscopy

- Background: ChemCam data and literature review
- Motivation: Uncertainty quantification for ChemCam
- Methods: Generative modeling via normalizing flows
- Proposed approach and Results
- Discussion and Conclusions

Methods

Generative modeling

- In generative modeling, any kind of observed dataset \mathcal{D} , is a finite set of samples generated from an underlying distribution
- The goal of any generative model is to approximate this data distribution given access to the dataset \mathcal{D}
- If we are able to *learn* a good generative model, we can use the learned model for downstream inference
- Perform: Sampling, density estimation, detect outliers, fill in incomplete data, representation learning

Methods: Normalizing flows (NF)

Definition: A Normalizing Flow is a transformation of a simple probability distribution (e.g., a standard normal) into a more complex distribution by a sequence of invertible and differentiable mappings.

4-step flow transforming samples from a standard-normal base density to a cross-shaped target density (*Papamakarios et. al., 2021 arXiv 1912.02762*)

- Mappings $f_i(\mathbf{z}_{i-1})$ need to be computationally efficient but also expressive enough
- NF produce tractable distributions where both sampling and density evaluation can be efficient and exact
- Compared to other approaches (VAE, GAN) NF allows for exact evaluation of densities and efficient sampling
- Parallel WaveNet¹ model is currently used by Google Assistant to generate realistic speech

Methods: Normalizing flows (NF)

- Let us consider a directed, latent-variable model over observed variables X and latent variables Z
- In a **normalizing flow model**, the mapping between Z and X, given by $f_{\theta} \colon \mathbb{R}^n \to \mathbb{R}^n$ is deterministic and invertible such that $X = f_{\theta}(Z)$ and $Z = f_{\theta}^{-1}(X)$
- Using change of variables, the marginal likelihood $p(\mathbf{x})$ is given by

$$p_X(\mathbf{x}; \theta) = p_Z(f_{\theta}^{-1}(\mathbf{x})) \left| \det \left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

- "Normalizing": change of variables gives a normalized density after applying an invertible transformation.
- "Flow": invertible transformations can be composed to create more complex invertible transformations.

- Background: ChemCam data and literature review
- Motivation: Uncertainty quantification for ChemCam
- Methods: Generative modeling via normalizing flows
- Proposed approach and Results
- Discussion and Conclusions

Dimension reduction

Non-negative matrix factorization (NMF)

- Assume random vector $y \in \mathbb{R}^M$ where $Y = [y_1, ..., y_N] \in \mathbb{R}^{N \times M}$
- M = 5606 (original dimensionality)
- Decompose $Y \approx XV$
- $X \in \mathbb{R}^{N \times L}_{\geq 0}$ and $V \in \mathbb{R}^{L \times M}_{\geq 0}$, $L \ll M$
- X: non-negative basis matrix, V: non-negative coefficient matrix
- Optimization: Minimize the Frobenius norm between Y and XV

original space $y \in \mathbb{R}^M$

Normalizing flow model

Latent space dimension: 15

x: Spectral latent variable

z: Latent variable (\sim normal)

Train normalizing flow model on the latent space

Real-NVP (Real-valued non-volume preserving)

Forward flow: $\mathbf{x}_{1:d} = \mathbf{z}_{1:d}$

$$\mathbf{x}_{d+1:D} = \mathbf{z}_{d+1:D} \odot \exp(f_{\alpha}(\mathbf{z}_{1:d})) + f_{\mu}(\mathbf{z}_{1:d}),$$

Inverse flow: $\mathbf{z}_{1:d} = \mathbf{x}_{1:d}$

$$\mathbf{z}_{d+1:D} = (\mathbf{x}_{d+1:D} - f_{\mu}(\mathbf{x}_{1:d}) \odot \exp(-f_{\alpha}(\mathbf{x}_{1:d}))$$

Determinant of Jacobian:

$$\det(J) = \prod_{i=1}^{D-d} \exp(f_{\alpha}(\mathbf{z}_{1:d}))_i = \exp\left(\sum_{i=1}^{D-d} f_{\alpha}(\mathbf{z}_{1:d})_i\right)$$

Single coupling flow architecture

Dinh et al. (2016) Density estimation using real nvp. arXiv:1605.08803

300

400

wavelength (nm)

Normalizing flow model

Latent space dimension: 15

700

800

Output Layer

Elemental

composition

Map LIBS spectra to compositions

25

true

50

Train a MLP model for each oxide

20

true

40

10

true

2.5

true

5.0

Uncertainty quantification via bootstrapping

Bootstrapping: Statistics resampling method that assigns measures of accuracy for any sample estimate

For a new sample $\mathbf{y}_0 \in \mathbb{R}^M$ we get a prediction: $\mathbf{v}_0 = v^{(i)}(\mathbf{y}_0) + r(\mathbf{y}_0)$

model data

uncertainty uncertainty

Uncertainty quantification via bootstrapping

Evaluation of prediction intervals

Coverage: The rate at which the actual values fall within the range of the prediction interval

Table. Coverage results (95% confidence intervals)

oxide	# of test samples	# of covered samples	Coverage (%)
SiO ₂	139	118	86.33
TiO ₂	139	137	98.56
Al_2O_3	139	120	86.33
FeO _T	139	120	86.33
MgO	139	120	86.33
CaO	139	134	96.40
Na ₂ O	139	130	93.53
K ₂ O	139	125	89.93

Predictions with uncertainty for novel samples

- Samples generated by the normalizing flow model
- Real samples collected on Mars from ChemCam

Data generation Normalizing flow $x_{d+1:D} = u_{d+1:D} \cdot \exp(\alpha_{d+1:D}) + \mu_{d+1:D}$ Unitensity (a.u.) 0.20 0.15 0.10 transformed distribution 0.10 0.10 0.05 0.00 base \mathbf{u}_{d} distribution 300 400 500 600 700 800 wavelength (nm) or... ChemCam intensity (a.u.) 0.20 0.15 0.10 0.05 300 600 700 400 500 800 wavelength (nm)

Prediction with uncertainty

- Background: ChemCam data and literature review
- Motivation: Uncertainty quantification for ChemCam
- Methods: Generative modeling via normalizing flows
- Proposed approach and Results
- Discussion and Conclusions

Conclusions

- Generative modeling can be successfully applied to model real-world data
- Normalizing flow models can be efficiently constructed on latent spaces for fast downstream inference
- Unsupervised and supervised learning can be combined to form an uncertainty quantification framework

References

- 1. Wiens et al. "The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests." *Space science reviews* 170, no. 1 (2012): 167-227.
- 2. Forni et al. "Independent component analysis classification of laser induced breakdown spectroscopy spectra." *Spectrochimica Acta Part B: Atomic Spectroscopy* 86 (2013): 31-41.
- 3. Castorena et al. "Deep spectral CNN for laser induced breakdown spectroscopy." *Spectrochimica Acta Part B: Atomic Spectroscopy* 178 (2021): 106125.
- 4. Kobyzev et al. "Normalizing flows: An introduction and review of current methods." *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2020).
- 5. Kumar et al. "Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection." In *Proc. 18th ACM SIGKDD Conf. Knowl. Discovery Data Mining.* 2012.
- 6. Papamakarios et al. "Normalizing flows for probabilistic modeling and inference." arXiv preprint arXiv:1912.02762 (2019).
- 7. Dinh et al. "Density estimation using real nvp." arXiv preprint arXiv:1605.08803 (2016).

